- 1. (a) How many ways are there to assign three jobs to five employees if each employee can be given more than one job?
 - (b) How many different strings can be formed using all the letters in MISSISSIPPI?
 - (c) Same as (b), but only using ten of them?
 - (d) How many terms you get when you expand $(x + y + z)^7$?
 - (a) 5^3
 - (b) $\frac{11!}{4!4!2!}$
 - (c) Divide into several cases depending on which character would be missed:
 - Misses one M: $\frac{10!}{4!4!2!}$
 - Misses one *I*: $\frac{10!}{3!4!2!}$
 - Misses one S: $\frac{10!}{4!3!2!}$
 - Misses one $P: \frac{10!}{4!4!}$

so the total number of strings is $\frac{10!}{4!4!2!} + \frac{10!}{3!4!2!} + \frac{10!}{4!3!2!} + \frac{10!}{4!3!2!}$

- (d) $_{3+7-1}C_7 = {}_9C_7 = 36.$
- 2. (a) How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 = 10$ where x_1, x_2, x_3, x_4 are nonnegative integers?
 - (b) Same as (a), but what if we also require $x_1 \ge 3$?
 - (c) Same as (a), but what if we also require $x_2 < 5$?
 - (d) Satisfying (b) and (c)?
 - (e) Satisfying (b) or (c)?
 - (a) $_{4+10-1}C_{10} = {}_{13}C_{10}$
 - (b) Consider a new equation $x'_1 + x_2 + x_3 + x_4 = (x_1 3) + x_2 + x_3 + x_4 = 7$, where $x'_1 = x_1 3 \ge 0$. This gives $_{4+7-1}C_7 = _{10}C_7$.
 - (c) Consider the complement. The number of solutions with $x_2 \ge 5$ is $_{4+5-1}C_5 = _8C_5$, hence the number of solutions with $x_2 < 5$ is $_{13}C_{10} _8C_5$.
 - (d) Combination of (b) and (c). Count the number of nonnegative integer solutions of the new equation $x'_1 + x_2 + x_3 + x_4 = 7$ with $x_2 < 5$, and we can use complement, which gives $_{4+7-1}C_7 _{4+2-1}C_2 = _{10}C_7 _5C_2$.
 - (e) Principle of Inclusion and Exclusion. (b) + (c) (d).

- 3. (a) Two dice are rolled. What is the probability of
 - i. both numbers are one?
 - ii. both numbers are even?
 - iii. sum of two numbers are less then six?
 - (b) What would be your best strategy if you are gambling with two dice and need to guess the total outcome?
 - (a) $\frac{1}{36}$
 - (b) $\frac{9}{36} = \frac{1}{4}$
 - (c) $\frac{1+2+3+4+5}{36} = \frac{15}{36} = \frac{5}{12}$

The most likely event to happen is when the summation is 7, with the probability $\frac{6}{36} = \frac{1}{6}$.

- 4. A fair coin tossed 10 times. Which one is more likely to happen:
 - (a) 5 heads and 5 tails,
 - (b) something else.

What if you toss a coin 100 times and ask the same question with 50/50?

There are ${}_{10}C_5 = 252$ possible cases for (a) among total 2^{10} possiblilities, and the probability is $\frac{{}_{10}C_5}{2^{10}} = 0.246$ Hence (b) is more likely to happen. Similarly, for 100 coin tosses, the probability for having exactly half heads and tails is

$$\frac{100C_{50}}{2^{100}} = 0.00795...$$

so it is much more unlikely to happen.