- 1. Suppose you flip a fair coin three time.
 - (a) What is the probability that you get three heads?
 - (b) What is the probability that you get exactly two heads?
 - (c) What is the conditional probability that you get exactly two heads, given that at least one of the flips is a head?
 - (d) What is the conditional probability that you get exactly two heads, given that at least one of the flips is a tail?
 - (e) What is the conditional probability that you get at least one tail, given that exactly two flips are heads?
 - (f) Now you toss the coin 99 times, and get 99 heads. You need to bet whether the next 100th toss is head or tail. What is your choice?
 - (a) $\frac{1}{8}$.
 - (b) $\frac{C(3,2)}{8} = \frac{3}{8}$.
 - (c) $P(H=2|H \ge 1) = \frac{P((H=2)\cap(H\ge 1))}{P(H\ge 1)} = \frac{P(H=2)}{P(H\ge 1)} = \frac{3/8}{1-P(H=0)} = \frac{3/8}{1-1/8} = \frac{3}{7}.$
 - (d) $P(H=2|T \ge 1) = \frac{P((H=2)\cap(T\ge 1))}{P(T\ge 1)} = \frac{P(H=2)}{P(T\ge 1)} = \frac{3/8}{1-P(T=0)} = \frac{3/8}{1-1/8} = \frac{3}{7}.$
 - (e) You can find that the probability is 1, without doing any calculation if there are exactly two heads, then there must be a tail.
 - (f) Any choice you like. All tosses are independent.

- 2. True or False:
 - (a) If *E* and *F* are mutually exclusive, then they are independent.
 - (b) If *E* and *F* are independent, then they are mutually exclusive.
 - (c) If *E* and *F* are mutually exclusive, then E^c and F^c are also mutually exclusive.
 - (d) If *E* and *F* are independent, then E^c and F^c are also independent.
 - (e) If *E* and *F* are independent and P(F) > 0, then P(E|F) = P(E).
 - (f) If *E* and *F* are independent and P(E), P(F) > 0, then P(E|F) = P(F|E).
 - (g) If *E* and *F* are mutually exclusive and P(E), P(F) > 0, then P(E|F) = P(F|E).
 - (a) False.
 - (b) False. Actually, being mutually exclusive and independent are not related.
 - (c) False. $E \cap F = \emptyset$ does not imply $E^c \cap F^c = \emptyset$. For example, consider $\Omega = \{1, 2\}$, $E = \emptyset$ and $F = \{1\}$.
 - (d) True. This can be checked using the principle of inclusion and exclusion. We only need to show that $P(E^c \cap F^c) = P(E^c)P(F^c)$:

$$P(E^{c} \cap F^{c}) = P((E \cup F)^{c})$$

= 1 - P(E \cup F)
= 1 - (P(E) + P(F) - P(E \cup F))
= 1 - P(E) - P(F) + P(E \cup F)
= (1 - P(E))(1 - P(F)) = P(E^{c})P(F^{c}).

(e) True. Intuitively true (if two events are independent, then conditioning does not affect probability), and also mathematically true:

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)P(F)}{P(F)} = P(E).$$

- (f) False. P(E|F) = P(F|E) if and only if P(E) = P(F), and this is not true in general.
- (g) True. Both P(E|F) and P(F|E) are zero, since $E \cap F = \emptyset \Rightarrow P(E \cap F) = 0$.