GSI: Seewoo Lee.

- 1. (a) What are the possible group homomorphisms from \mathbb{Z}_4 to \mathbb{Z} ?
 - (b) What are the possible group homomorphisms from \mathbb{Z}_4 to \mathbb{Z}_6 ?
 - (c) Are $\mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\mathbb{Z}_4 \times \mathbb{Z}_{10}$ isomorphic?
- 2. Let H and K be groups, and let $G = H \times K$. Define the maps $f : H \to G$ and $g : G \to K$ by $f(h) = (h, e_K)$ and g(h, k) = k.
 - (a) Show that f is an injective homomorphism.
 - (b) Show that q is a surjective homomorphism.
 - (c) Show that $f[H] = \ker(g)$.
 - (d) Show that the converse does not hold in the following sense: Find groups G, H, K and homomorphisms $f: H \to G$ and $g: G \to K$ such that f is injective, g is surjective, and $f[H] = \ker(g)$, but G is not isomorphic to $H \times K$.
- 3. Let G be a group generated by a subset $S \subseteq G$. Let H be a subgroup of G. Prove that H is a normal subgroup of G if and only if for all $s \in S$, sH = Hs. In other words, it suffices to check the normality condition on the generators of G.
- 4. Consider the dihedral group D_4 of symmetries of a square. Let r be a counterclockwise rotation by 90° and let s be a reflection across a vertical axis of symmetry.
 - (a) Find all elements of order 2 in D_4 . There are 5 of them.
 - (b) Consider a subgroup generated by s. What is the order of the subgroup? Is it normal?
 - (c) Consider a subgroup generated by r^2 . What is the order of the subgroup? Is it normal?
 - (d) (Yes it is normal.) The factor group $D_4/\langle r^2 \rangle$ has order 4. You know there are two possible groups of order 4 up to isomorphism: \mathbb{Z}_4 and the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$. Which one is it?
- 5. Let $G = GL_2(\mathbb{R})$. Consider the subset of invertible upper triangular matrices

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, d \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R} \right\}$$

- (a) Show that B is a subgroup of G under matrix multiplication. Is it normal in G?
- (b) Show that the set of matrices

$$N = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{R} \right\}$$

is a normal subgroup of B.

(c) Can you give a simple description of the factor group B/N?