GSI: Seewoo Lee.

1. Let g = (1,0). The order of g in $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ is 4. However, the order of g + H in G/H is 2 since $2g = (2,0) = (2,6) \in H = \langle (1,3) \rangle$. Thus the order of g + H does not need to equal the order of g.

In fact, the order of gH in G/H divides the order of g in G. Under the map $\phi: G \to G/H$ defined by $\phi(g) = gH$ (whose kernel is H), the image of the subgroup $\langle g \rangle$ is the subgroup $\langle gH \rangle$ in G/H. By the First Isomorphism Theorem, we have

$$\langle g \rangle / (\langle g \rangle \cap H) \cong \langle gH \rangle$$
.

Thus, the order of gH, which is the order of the group on the right side, is given by

$$|gH| = \frac{|g|}{|\langle g \rangle \cap H|},$$

- 2. (a) For g = (23), the fixed points are 1 and 4.
 - (b) For x = 1, $G_x = \{ \sigma \in S_4 : \sigma(1) = 1 \} = \{ e, (23), (24), (34), (234), (243) \}$. This is isomorphic to S_3 , as a permutation of $\{2, 3, 4\}$, and has order 6.
 - (c) The action is transitive and $G \cdot 1 = \{1, 2, 3, 4\}$, so $|G \cdot 1| = 4 = \frac{24}{6} = \frac{|S_4|}{|S_3|}$
 - (d) In general, S_n acts transitively on $\{1, \ldots, n\}$; the stabilizer of 1 (or in fact, any i) is isomorphic to S_{n-1} . The orbit-stabilizer theorem gives $n = \frac{|S_n|}{|S_{n-1}|} = \frac{n!}{(n-1)!}$.
- 3. Note that the factor group is isomorphic to the image $\{\pm 1\}$, which is a group of order 2, so every element has order 1 or 2. The sign of

$$\sigma = (1\,2\,3\,4\,5)(6\,7\,8)(9\,10)(11\,12\,13\,14)(15\,16\,17\,18\,19\,20)$$

is (+)(+)(-)(-)(-) = (-), so $\sigma \notin A_{100}$ and σA_{100} is the nontrivial element of the quotient. Hence the order is 2.

4. (a) With the left-action convention (apply s then r for rs):

$$r = (12345),$$
 $s = (25)(34),$ $rs = (12)(35).$

- (b) $G_1 = \{e, s\}$, order 2.
- (c) $G \cdot 1 = \{1, 2, 3, 4, 5\}$. Basically, you can move 1 to any vertex by some rotation.
- (d) $|D_5| = 10 = |G \cdot 1| \cdot |G_1| = 5 \cdot 2$.
- (e) Since r and s generates D_5 , you only need to check that $H = \langle r \rangle$ is fixed under the conjugation by r and s (Why?). Since $r \in H$, conjugation by r fixes H. Also, $srs^{-1} = r^{-1} \in H$, so conjugation by s also fixes H. Thus H is normal in D_5 .

Note that H has order 5 and index 2 in D_5 . In general, any subgroup of index 2 is normal (Why?).

- (f) For general $n \geq 3$, stabilizer subgroup of any vertex has order 2, and the action is transitive on the *n* vertices, so the orbit has size *n*. We have $n = \frac{|D_n|}{|(D_n)_x|} = \frac{2n}{n}$. Also, the subgroup $\langle r \rangle \leq D_n$ is normal (of order *n* and index 2).
- 5. To figure out the order of the group, let's label two adjacent vertices of the cube as 1 and 2. When we rotate the cube, 1 can be sent to any of the 8 vertices, and once we fix where 1 goes, 2 can be sent to any of the 3 adjacent vertices. Thus there are $8 \times 3 = 24$ possible rotations, so |G| = 24.

In fact, the group is isomorphic to S_4 . You can understand by regarding the rotations as permutations of the 4 long diagonals of the cube. This action is faithful and transitive, and the stabilizers are conjugate, yielding an isomorphism.