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Goal

Goal of today’s talk:

• Tell you about the potential usefulness of machine learning in

number theory (but without AI hype)

• Two use cases: Predicting the rank of elliptic curves and

Galois groups of number fields

• Give you some ideas for your future research
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Elliptic Curve

Definition

An elliptic curve over a field K is a smooth, projective, algebraic

curve of genus one, with a specified point O ∈ E (K ).

More concretely, it can be given by (the projectivization of) a

Weierstrass equation of the form

y2 = x3 + ax + b

where a, b ∈ K and the curve is nonsingular1.

1∆ = −16(4a3 + 27b2) ̸= 0
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Group Structure of E (K )

Elliptic curves have a group structure. The point at infinity O

serves as the identity element.
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Mordell–Weil theorem

Theorem (Mordell–Weil)

The group of rational points E (Q) is a finitely generated abelian

group. That is,

E (Q) ∼= E (Q)tors ⊕ Zr

where E (Q)tors is the torsion subgroup and r is the rank of the

elliptic curve.
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Torsion is Easy

Theorem (Nagell–Lutz)

Let (x , y) ∈ E (Q) be a torsion point.

• If (x , y) ̸= O, then x , y ∈ Z.

• Either y = 0 or y2 divides the discriminant ∆ of the curve.

Theorem (Mazur)

The torsion subgroup E (Q)tors is isomorphic to one of the

following 15 groups:

Z/n (1 ≤ n ≤ 10, n = 12),

Z/2× Z/2m (1 ≤ m ≤ 4).
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Rank is Hard

It is not just hard, but it is very hard! We have the following list of

open problems:

• Can you find an elliptic curve over Q with arbitrarily large

rank?

• (Goldfeld’s conjecture) How many elliptic curves over Q have

rank 0, 1, 2, . . . ?

• (BSD conjecture, Parity conjecture) How is the rank of an

elliptic curve over Q related to its L-function?
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ML?

Question

Can we predict the rank of an elliptic curve over Q using machine

learning?

If the target is the rank r of an elliptic curve E/Q, then what are

the features? We may want to predict r from something that is

easier to compute.
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He–Lee–Oliver

Yanghui He, Kyu-Hwan Lee, and Thomas Oliver2 used classical

ML algorithms (not ChatGPT!) to predict the rank of elliptic

curves over Q, using Frobenius traces ap(E ) as features:

ap(E ) = p + 1− |E (Fp)|

where |E (Fp)| is the number of points on the reduced curve

modulo p (when E has good reduction at p).

Note that the rank (more precisely, the isogeny class of E ) is

determined by ap(E ) for all p.

2He–Lee–Oliver, Machine learning invariants of arithmetic curves, 2023
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He–Lee–Oliver

Consider rank 0, 1 curves of conductor ≤ 10000. They used logistic

regression:

P[rank(E ) = 1|{apn}n≤300] ≈ σ(w · a+ b)

where a = (a2, a3, a5, . . . a1987) ∈ R300,

σ(x) =
1

1 + e−x
,

and w ∈ R300, b ∈ R are weight and bias to be optimized. It

essentially tries to find the a separating hyperplane in RN = R300.
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Quiz 1

What was the accuracy of the experiment?

1 0%

2 (0%, 50%]

3 (50%, 75%]

4 (75%, 90%]

5 (90%, 95%]

6 (95%, 100%)

7 100%
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Why?

Why does it work so well?
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It is not surprising

The BSD conjecture claims that the number of Fp points and the

rank r of E are related by∏
p≤x
p∤∆E

|E (Fp)|
p

∼ C (log x)r

for some constant C > 0. In other words, the rank and {|E (Fp)|}p
are positively correlated. Since ap(E ) = p + 1− |E (Fp)|, the rank

and {ap}p are negatively correlated.
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Something is very surprising

Podznyakov3 analyzed models and data, e.g. using PCA. He

plotted the average of ap for each p and plotted it as a function in

p, and got the following plot:4

3was an undergraduate student supervised by K.-H. Lee
4Conductor in [7500, 10000], rank ∈ {0, 1}
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Something is very surprising

This IS surprising, since

1 We only expected a negative correlation between rank and

ap’s, but this shows an oscillating pattern.

2 The equation for the “limit curve” is still unknown.
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Murmuration

It is now called murmuration, and has become an active area of

study. The oscillating pattern is observed for other “families” of

L-functions, and the “limit curve” (murmuration density) is now

known for

• Modular forms

• Maass forms

• Dirichlet characters

• Hecke characters of imaginary quadratic fields

• Elliptic curves, but in a different setup

In this case, ML “motivated” mathematicians to find a new

phenomenon.

However, it is incorrect to say that ML “found”

new mathematics.
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Number fields

Definition

A number field is a finite extension K of Q.

Q,Q(i),Q(
√
2),Q( 3

√
3),Q[x ]/(x3 − 3x − 1), . . .
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Galois group

Question

How do we compute the Galois group Gal(K/Q) of a number

field K?

It is not an easy problem.
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Quiz 2-1

What is the Galois group of

K = Q[x ]/(x4 + 2x2 + 4)

1 Z/4
2 (Z/2)2
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Quiz 2-1

What is the Galois group of

K = Q[x ]/(x4 + 2x2 + 4) ≃ Q(
√
2,
√
−3)

1 Z/4
2 (Z/2)2
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Quiz 2-2

What is the Galois group of

K = Q[x ]/(x8 − x7 + x5 − x4 + x3 − x + 1)

1 Z/8
2 Z/4× Z/2
3 (Z/2)3

4 D4

5 Q8
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Quiz 2-2

What is the Galois group of

K = Q[x ]/(x8 − x7 + x5 − x4 + x3 − x + 1) ≃ Q(ζ15)

1 Z/8
2 Z/4× Z/2 ≃ (Z/15)×

3 (Z/2)3

4 D4

5 Q8
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ML?

Question

Can we use ML to predict Galois group?
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Dedekind zeta function

The analogue of ap(E ) for number fields is the Dedekind zeta

coefficients.

Definition

For a number field K , the Dedekind zeta function ζK (s) is

defined as

ζK (s) =
∑
a⊂OK

1

(Na)s

where the sum is over all nonzero ideals a of the ring of integers

OK of K , and Na = |OK/a| is the norm of a.
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Dedekind zeta function

It can be rewritten as

ζK (s) =
∑
n≥1

an(K )

ns

for an(K ) = |{a ⊂ OK : Na = n}|. These will be used as features.
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Examples

ζQ(s) =
∑
n≥1

1

ns
= ζ(s)

ζQ(i)(s) =
1

1s
+

1

2s
+

1

4s
+

2

5s
+

1

8s
+

1

9s
+ · · ·

= ζ(s)

(
1

1s
− 1

3s
+

1

5s
− 1

7s
+ · · ·

)
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Setup

We follow the setup of He–Lee–Oliver5

• Fix degree ∈ {4, 6, 8, 9, 10}.
• Input (feature): {an(K )}n≤N , let’s say N = 1000.

• Output (target): Galois group

• Model: Decision Tree (= bunch of if-else statements)

• We’ll only focus on Galois (normal) extensions.

5He–Lee–Oliver, Machine Learning Number Fields, 2022
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Quiz 3-1

Let K be a degree 9 Galois extension of Q. What are the possible

groups that appear as Gal(K/Q)?

Z/9, (Z/3)2
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Quiz 3-2

There are 1266 Galois nonic fields in LMFDB, 22% of them are

Z/9 and 78% of them are (Z/3)2. Split them randomly into train

(80%) and test (20%) set. What was the accuracy of the decision

tree model?

1 0%

2 (0%, 50%]

3 (50%, 75%]

4 (75%, 90%]

5 (90%, 95%]

6 (95%, 100%)

7 100%
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Why? Let’s look inside the tree.

Decision trees are great since they are often easy to interpret.

Here’s the tree achieving 100% accuracy:

a1000 ≤ 4.5

Z/9

a343 ≤ 0.5

Z/9

a27 ≤ 0.5

Z/9 (Z/3)2

Y N

Y N

Y N
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Why? Let’s look inside the tree.

Decision trees are great since they are often easy to interpret.

Here’s the tree achieving 100% accuracy:

a23·53 ≤ 4.5

Z/9

a73 ≤ 0.5

Z/9

a33 ≤ 0.5

Z/9 (Z/3)2

Y N

Y N

Y N
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Tree’s logic

All an’s are integers, so an ≤ 0.5 is equivalent to an = 0. From the

two nodes below, it is natural to conjecture that

Conjecture

Let K/Q be a nonic Galois extension. If ap3(K ) = 0 for some

prime p, then Gal(K/Q) ≃ Z/9.
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Tree’s logic

All an’s are integers, so an ≤ 0.5 is equivalent to an = 0. From the

two nodes below, it is natural to conjecture that6

Theorem (Lee2)

Let K/Q be a nonic Galois extension. Then ap3(K ) = 0 for some

prime p if and only if Gal(K/Q) ≃ Z/9.

6Lee–Lee, Machines Learn Number fields, But How? The Case of Galois

Groups, 2025
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Tree’s logic

All an’s are integers, so an ≤ 0.5 is equivalent to an = 0. From the

two nodes below, it is natural to conjecture that7

Theorem (Lee2)

Let ℓ be a prime and K/Q be a degree ℓ2 Galois extension. Then

apℓ(K ) = 0 for some prime p if and only if Gal(K/Q) ≃ Z/ℓ2.

7Lee–Lee, Machines Learn Number fields, But How? The Case of Galois

Groups, 2025
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Provable prediction

a23·53 ≤ 4.5

Z/9

a73 ≤ 0.5

Z/9

a33 ≤ 0.5

Z/9 (Z/3)2

Y N

Y N

Y N

The bold paths always gives a correct prediction!
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Proof

Exercise (for the end of the semester)! Use Euler factorization of

Dedekind zeta function, decomposition/inertia group, etc.
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Other degrees

We did it for degrees 4, 6, 8, 9, 10. Nonabelian ones are more

interesting. For example, for degree 8, we have

Theorem (Lee2)

Let K/Q be an octic Galois extension.

1 If ap4(K ) = 0, then Gal(K/Q) is a C8-extension (hence

abelian).

2 For p ≡ 1 (mod 4), if ap4(K ) = 1 or ap2(K ) = 1, then

Gal(K/Q) is abelian.

3 If p ≡ 3 (mod 4), ap4(K ) = 1, and ap2(K ) > 0, then

Gal(K/Q) is nonabelian.

And the decision tree uses this as a part of its prediction logic!
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Review Quiz

K = Q[x ]/(x8 − x7 + x5 − x4 + x3 − x + 1) = Q(ζ15)

One can compute (using ‘zeta coefficients()’ in SageMath) that

a52 = a54 = 1, hence K/Q is abelian.

In fact, this also shows

Gal(K/Q) ≃ Z/4× Z/2, since ap2 = ap4 = 1 can only happen

when p is totally ramified in K .
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General workflow

1 Problem setup: Define target (hard to compute) and feature

(easy to compute) of ML model.

2 Experiments: Start from small and simpler algorithms. If they

don’t work well, try larger and more complex models.

3 Interpret: If the model works much better than you expected,

there should be something. Analyze the models.

4 Math: Make a conjecture from your observation, and try to

prove it.
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General workflow

Ideal scenarios:

• ML model works so well and is easy to interpret.

• Find something new and prove a (well-known) conjecture.

• Design a new algorithm to compute the target that is more

efficient than existing algorithms.

• Find rare examples (e.g. elliptic curve of rank ≥ 30?).

Probably use Reinforcement Learning.
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If model works so bad

...then it is also good! If you tried several models and still get a

poor performance close to random guess, then it suggests an

equidistribution property of the target with respect to the feature.
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Unit rank of quadratic fields

For example, when you try to predict the rank of the unit group

UK = O×
K of a quadratic field K = Q(

√
d) from the Dedekind zeta

coefficients an(K ), you may get about 50% accuracy for any

model.

This suggests that the distribution

P[an(K ) = a | rank(UK ) = r ]

only depends on n and a ∈ {0, 1, 2}, not on r ∈ {0, 1}.
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Possible projects

• Read the works where machine learning is used to study

number theoretic objects8. If they only report performance

but no interpretation, try to interpret the model.

• Think about your favorite number theoretic object. Can you

learn any invariants of it from other invariants, using machine

learning? Does LMFDB have data on it?

• There are some possible follow-up works for Lee2, e.g.

non-Galois extensions (both with or without ML).

8https://seewoo5.github.io/awesome-ai-for-math/
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