Sage can do ___!

Seewoo Lee October 9, 2024. Math254A at UC Berkeley

Introduction

• System for Algebra and Geometry Experimentation

- System for Algebra and Geometry Experimentation
- Originator: William Stein

- System for Algebra and Geometry Experimentation
- Originator: William Stein
- CAS (Computer Algebra System) based on Python

- System for Algebra and Geometry Experimentation
- Originator: William Stein
- CAS (Computer Algebra System) based on Python
- Free and open-source software

• If you know how to write Python code, you can use Sage easily

What is Sage?

- If you know how to write Python code, you can use Sage easily
 - Syntax is *almost* the same, but not exactly
 - There are some Sage-specific syntax, e.g. ^ has different meaning for pure Python and Sage
 - Do exact calculations with integers and rational numbers

What is Sage?

- If you know how to write Python code, you can use Sage easily
 - Syntax is *almost* the same, but not exactly
 - There are some Sage-specific syntax, e.g. ^ has different meaning for pure Python and Sage
 - Do exact calculations with integers and rational numbers
- Sage \neq fancy Python

- If you know how to write Python code, you can use Sage easily
 - Syntax is *almost* the same, but not exactly
 - There are some Sage-specific syntax, e.g. ^ has different meaning for pure Python and Sage
 - Do exact calculations with integers and rational numbers
- Sage \neq fancy Python
 - Sage = fancy (Python + GAP + PARI/GP + Singular + NTL + ...)
 - For better performance, Sage uses optimized libraries for specific tasks

- You can install it from https://www.sagemath.org/
- or you can visit https://sagecell.sagemath.org/ and use online
- Companion codes (jupyter notebooks) are available at https://gist.github.com/seewoo5/ 400dbb69b8a4a7831ea6f035d35ad08d

Basic usage

Pre-undergraduate

- Add/multiply numbers
- Add/multiply many numbers
- Factorize a number
- Solve polynomial equations
- Pre-calculus

- Add/multiply numbers
- Add/multiply many numbers
- Factorize a number
- Solve polynomial equations
- Pre-calculus

Exercise. How many square-free numbers are there between 1 and 1M? (Hint: try list(factor(60)))

- Linear algebra
- Group theory

- Linear algebra
- Group theory

Exercise. How many 2 by 2 integer matrices with determinant 1 and absolute value of each entry at most N = 100 are there?

- Linear algebra
- Group theory

Exercise. How many 2 by 2 integer matrices with determinant 1 and absolute value of each entry at most N = 100 are there?

- Can you make it faster? Try for N = 1000. (This question is for internship preparation)
- Can you find an asymptote as $N \to \infty$? (This is a hard math question)

Basic number theory

Undergraduate number theory

- Modular arithmetic
- Quadratic reciprocity
- Fermat's little theorem
- Primitive roots

Undergraduate number theory

- Modular arithmetic
- Quadratic reciprocity
- Fermat's little theorem
- Primitive roots

Exercise. We have public keys for RSA cryptosystem:

n = 6700238097692010877, e = 4751936151942303811

and a ciphertext c = 6154760121873467048. Find the message m.

- Basic arithmetic
- Polynomial over \mathbb{Q}_p
- Extensions of \mathbb{Q}_p
- Miscelleneous functions on \mathbb{Q}_p

- Basic arithmetic
- Polynomial over \mathbb{Q}_p
- Extensions of \mathbb{Q}_p
- Miscelleneous functions on \mathbb{Q}_p

Exercise. How many quadratic extensions of \mathbb{Q}_p are there? Construct them with Sage.

- Basic arithmetic
- Splitting of prime ideals
- Galois group
- Class group

- Basic arithmetic
- Splitting of prime ideals
- Galois group
- Class group

Exercise. Choose an exercise from Marcus's book "Number Fields" and solve it with Sage.

- Elliptic curves
- Modular forms
- *L*-functions

Homeworks (if you enjoyed)

Implement Newton's method for quadratic polynomials over \mathbb{Q}_p .

• Check that $\sqrt{2} \in \mathbb{Q}_p$ for

$$p = 479001599 = 12! - 1.$$

• If we expand it as $\sqrt{2} = a_0 + a_1 \cdot p + a_2 \cdot p^2 + \cdots$, then what are the two possible values of $a_{100} \in \{0, 1, \dots, p-1\}$?

Choose your favorite prime p and integer $n \ge 2$. How many extensions of \mathbb{Q}_p of degree n are there? Can you construct some/all of them?

Let K/\mathbb{Q} be a number field which is the splitting field of

$$f(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x - 1.$$

K is known to be Galois over \mathbb{Q} .

- Find as many as primes p that split completely in K.
- Could you find any patterns in your list? What can you conclude? (Hint: observe the primes modulo some integer.)
- Find closed form of zeros of f(x) = 0.

Consider the following two elliptic curves over \mathbb{Q} :

$$E_1 : y^2 = x^3 - 13392x - 1080432$$
$$E_2 : y^2 = x^3 - 432x + 8208.$$

For many primes $p \neq 11$, compare the number of \mathbb{F}_p -points on E_1 and E_2 (don't forget the point at infinity). What did you observe? Can you prove it? Consider the elliptic curve

$$E: y^2 + y = x^3 - 7.$$

Again, compute the number of \mathbb{F}_p -points on E for many primes $p \neq 3$.

- Observe the numbers modulo 3. What did you observe?
- Now, consider the discriminant form

$$\Delta(q) = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n \ge 1} \tau(n) q^n.$$

For each prime $p \neq 3$, observe $\tau(p) \pmod{3}$. What did you find?

• How can you relate these two observations?

- Choose your favorite theorem with a constructive/algorithmic proof, and implement it in Sage.
- Choose your favorite conjecture and give evidences of it. You can also try to make your own conjecture.
- Arithmetic statistics
- Cryptography (RSA, Elliptic curve, Lattice, ...).
- Sage + ML, discover anything interesting.

